Infusing Computing Identity
into Introductory Engineering Instruction

Briana Bettin*, Michelle Jarvie-Eggart!, Kelly S. Steelman? and Charles Wallace®
*Department of Computer Science
Michigan Technological University, Houghton, Michigan 49931-1295
Email: bebettin@mtu.edu
TDepartment of Engineering Fundamentals
Michigan Technological University, Houghton, Michigan 49931-1295
Email: mejarvie@mtu.edu
iDepartment of Cognitive and Learning Sciences
Michigan Technological University, Houghton, Michigan 49931-1295
Email: steelman@mtu.edu
§Department of Computer Science
Michigan Technological University, Houghton, Michigan 49931-1295
Email: wallace@mtu.edu

Abstract—In this work in progress/innovative practice paper,
we describe our efforts to integrate introductory computer
science pedagogical methods into an engineering fundamentals
context. Our multidisciplinary team is addressing the problem
of perceived value and applicability of programming for first-year
engineering students. These students tend to be unaware of the
importance of programming skills for practicing engineers within
industry, and consequently display low interest in programming.
We are working to address this perception problem through
interventions in the engineering fundamentals classroom.

Our interventions have three objectives: establish awareness
of how programming skills can be generalized beyond the intro-
ductory classroom, incorporate targeted activities for algorithmic
thinking, and demonstrate the practical applications of program-
ming skills. Similar interventions are part of the introductory
experience for our computer science students; our goal here is to
tailor the interventions to an introductory engineering context.
Our goal is for students to recognize computing as part of the
career and identity of an engineer.

I. CASTING ENGINEERS AS CODERS

Within industry and across engineering disciplines, comput-
ing skills and tools have become essential for engineers. As
the Industrial Internet of Things (IloT) increasingly embeds
robotics, software, and electronic controls within manufac-
turing processes, engineers need to be able to extract data,
interpret, and write code to control these processes [1]. For
example, one of our authors worked in industry as an envi-
ronmental engineer, where she extracted emissions data from
a process control system for federal reporting.

The Accreditation Board for Engineering and Technology’s
(ABET) Ceriteria for Accrediting Engineering Programs Crite-
rion 5.b (Curriculum) states that engineering curricula must in-
clude “a minimum of 45 semester credit hours (or equivalent)
of engineering topics appropriate to the program, consisting
of engineering and computer sciences and engineering design,
and utilizing modern engineering tools.” [2]

Undergraduate engineering degree programs have adapted
to this new reality by including programming as an essential
element of first year engineering curricula. This initial experi-
ence, however, is not often accompanied by the repeated rein-
forcement that students in computing disciplines encounter.
After their initial exposure, engineering students may not
use their programming skills again until much later in their
degree program. For example, after their first year introductory
course, engineering students exploring mechatronics at our
institution may not see coding again until their third year of
schooling. Students may easily forget what they have learned
and question the value of it, as they do not see it in subsequent
courses. This lack of opportunity to utilize newly developed
programming skills can strengthen the idea among peer groups
that programming is irrelevant to engineers, influencing indi-
vidual perceptions.

Others have noted problems with student engagement
in introductory engineering programming experiences. One
study, which examined motivation profiles (including inter-
est/enjoyment, value/usefulness, and perceived choice) of 434
first year engineering students learning programming in a
flipped class environment, found that over 80% displayed mid-
to low-level motivation for learning programming [3]. This
lack of motivation may stem from an engineering identity that
does not value programming.

As engineering identity is often formed prior to the choice to
major in engineering [4], [5], [6], expansion of the engineering
identity to include programming may be needed. While the
concept of identity makes several appearances in engineering
literature [4], [5], [6], [7], [8], [9], [10], [11], [12], computing
literature on identity presents less research [13], [14], [15].
The Engineering Students Attitudes Toward CS Survey [16]
is the closest fit in topic but examines attitudes rather than
identity.

Our preliminary focus group work suggests that students

tend not to recognize programming as an essential skill
within their particular engineering discipline, nor to identify
themselves as programmers. Without understanding the value
of programming to their identity or careers, they are not
motivated to develop their programming skills. These students
will remain at a novice level, which may perpetuate the idea
that “engineers don’t code”.

Additionally, our recent survey-based work investigating
engineering student attitudes toward computer science sug-
gests that students’ self-reported level of understanding of “the
way that programs are constructed” is significantly related to
both their confidence and intention to take future program-
ming coursework [17]. The factor of interest is a language-
independent concept, referring to the understanding of the
relationship between textual instructions and corresponding
behavior. We use the term algorithmic thinking to capture the
higher level nature of this factor, lying outside of particular
syntactic, semantic, or pragmatic aspects of a given program-
ming context.

Based on this initial work, we hypothesize that two changes
could enhance the sense of computing identity among engi-
neering students:

« Better understanding of the utility of programming in the
lives of engineers

o Engagement in language-independent problem solving
practices, in conjunction with traditional programming
exercises

II. INSTRUCTIONAL CONTEXT

Our team is working to develop and assess an approach
that incorporates the algorithmic thinking concepts from our
introductory Computer Science (CS) programming course into
the first few weeks of the Engineering Fundamentals (EF)
program. We have investigated key differences in curricula,
located concepts that may benefit from intervention, and are
working to mitigate repetition for computer engineering stu-
dents, who take both courses. The goal is to pilot an approach
within the EF program that is effective at promoting under-
standing and value of programming to engineering students. In
this specific work, we focus on an interdisciplinary approach
to introductory programming that ensures relevant, meaningful
topics are contextually woven into the EF course.

Our approach draws upon current practices employed in our
CS program’s introductory programming course (CS1), which
begins by introducing students to algorithmic thinking. In the
first few weeks of class, CS1 covers topics such as: break-
ing down word problems, identifying key components and
programming patterns, communicating with flowcharts and
pseudocode, understanding how the computer interprets code,
product lifecycle documentation, and debugging. These topics
are aimed at students who have never coded before, allowing
them to ease into programming by introducing relevant higher
level ideas. We couple this with block-based programming and
critical thinking activities before moving to a traditional text-
based language for the rest of the course.

The first year engineering program (ENGI), in contrast,
briefly addresses algorithmic thinking, after which students
are immediately introduced to MATLAB by week two. In
ENG1, MATLAB is framed as a tool that students can apply
to relevant problems. Students learn MATLAB in a flipped
learning environment, with support from near-peer teaching
assistants. Typical sections of ENG1 have 120 students that
meet twice weekly in two-hour “studio sessions” with the
instructor and all teaching assistants (TAs), as well as once
weekly one-hour sessions with just their TA.

III. OBJECTIVES AND INTERVENTIONS

Our primary objective is that ENGI students will gain a
stronger understanding of the value of programming skills
in an engineering career. We hope that this fosters a greater
appreciation, interest, and intrinsic motivation in learning this
material. We also want them to develop greater confidence in
their capabilities at approaching problems that require algo-
rithmic conceptualization, with the hope that such confidence
fosters continued growth and persistence in programming.

Interventions are targeted for the 2020/21 academic year to
achieve the following goals:

1) Establish student awareness that MATLAB skills can
be generalized to other programming languages, and
that conceptual components of program structure are
universal across all languages (such as loops, conditional
logic, etc.).

2) Incorporate targeted activities for algorithmic thinking
and conceptual design, directly into existing program-
ming exercises.

3) Demonstrate the practical application of programming
skills to engineering disciplines to increase engineering
student acceptance of programming as useful knowl-
edge.

A. Establishing that MATLAB skills can be generalized

Many core concepts in programming exist across all pro-
gramming languages in some form. MATLAB is no different:
it contains loops, if statements, conditions, variable assign-
ments, structures for holding multiple pieces of data, and
more. Our goal with this intervention is to better establish
that the core ideas learned by new MATLAB users are able
to be generalized to other languages. Within focus groups,
our students have presented the misconception that “MATLAB
isn’t a programming language”, and as a result, may not realize
the valuable core ideas they gain while learning these concepts.

To target this misconception, we are planning an interven-
tion which will present our students with code in a similar but
distinct language from MATLAB that contains core concepts
they have already learned in MATLAB. For example, engi-
neering students familiar with MATLAB might be presented
with an if statement and logical conditions written in Python.
Our goal with this intervention is to pose a working-world
scenario where a previous employee has written some code
that is required for the team to use, but that the team must
decipher what it means.

In reflecting on an industry application where their MAT-
LAB skills may be generalized, we hope that students will
better understand the way the skills they have learned apply
beyond “just MATLAB”. Further, they will see how despite not
learning the language in question, they can still identify core
components and general ideas of behavior, even if they do not
have “mastery” of that language’s syntax. This we hope will
help students recognize the general applicability of these skills,
and that they are not just “MATLAB” skills. Assignments
embedded in introductory engineering courses for this purpose
will be qualitatively assessed to determine the extent to which
students are able to identify core concepts within unfamiliar
programming languages.

B. Incorporating targeted activities for algorithmic thinking

A focus of this intervention is to integrate CS approaches
to teaching beginning programming into the introductory engi-
neering curriculum. EF has developed preliminary educational
scaffolding around algorithmic thinking, but would like to
further improve these efforts with the guidance of CS pro-
fessionals. Currently in ENGI1, students have an “Algorithm
Template” assignment, where they must plan an algorithm
by completing sections of the template. In CS1, students do
similar exercises, but with additional guided questions and
considerations, aiding in confident development of a strong
algorithm template. Additionally, before CS1 students begin
working in Java, where they must have an understanding of
syntax, they spend about four weeks planning how to approach
and structure code. This planning period is spent alongside
time working in the visual block-based programming language
Snap! In contrast, ENG1 students begin class in the first week
focused on teaming, communication, ethics, and exploring
engineering majors. By the second week of class, they are
actively programming in MATLAB, starting by using it as a
“calculator” and entering in basic math commands.

We plan to expand the existing algorithm exercise in ENGI
and incorporate an intervention where students are guided
through the algorithm template exercise with additional ques-
tions and considerations, such as those they might see in CSI.
We will review the responses to the guided questions and
templates, and also present a quiz as a quantitative assess-
ment to compare intervention and non-intervention groups for
overall understanding of algorithmic design. This will likely
be conducted among recitation sessions by near-peer teaching
assistants, as they would be able to facilitate the activity.

C. Demonstrating the practical application of programming

In the EF context, we need to design our messaging
around the value to engineers, use engineering terminology,
and incorporate additional concepts in a way that ties to
their engineering goals. Messages that are commonly used
to encourage the pursuit of computer science may likely not
succeed with a student who has developed an engineering
identity and does not see any association of that identity
with programming. Our messaging and intervention will be

designed around showcasing relevance and future value for an
engineer.

We are designing interventions specifically targeting the
issue of relevance to engineers, which are likely to include
presentations or video messages from engineers in industry
about how they use programming within their careers. Last
year, we implemented this strategy alone, without the ad-
ditional interventions detailed in this paper. By themselves,
presentations on the use of programming skills by practicing
engineers did not create measurable impacts on engineering
students’ acceptance of programming as a useful technology
or skill.

To increase engagement with the presentations, we intend
to ask students to reflect on the videos, using prompts that
will ask them to consider relevancy of skills they are learning
to their future engineering careers. Reflective practices have
been identified as a valuable pedagogical tool in helping engi-
neering students extract meaning from their experiences [18].
Additionally, ENG1 students will be given an assignment to
research and report on examples of how engineers within their
intended engineering discipline of study utilize programming.
These reflections may be beneficial for qualitative analysis,
and the act of writing them may have an affect on student
attitudes and perception.

Technology acceptance surveys have already been used in
ENGI1 for previous data collection, based on the Unified
Theory of Acceptance and Use of Technology (UTAUT), and
have utility here to measure changes in the students as a result
of the interventions [19]. Attitudes toward programming and
computer science surveys would also be of value to measure
changes in students. In using these surveys throughout the
semester, we can gauge what effect, if any, the interventions
are having on ENGI student perception and attitudes.

IV. IMPLEMENTATION PLAN

Our interventions are being designed for implementation in
one master class of of ENGI1 during the Fall 2020 semester.
Normally, this class is composed of 5 sections of 24 students,
each with their own near-peer TA, for a total of 120 students.
The course is taught with a flipped-class class structure,
employing a combination of online pre-lesson activities, once-
per-week individual section sessions led by near-peer TAs,
and twice-per-week studio sessions with the full class of five
sections. It is anticipated that this course will be offered at
least partially online in the Fall of 2020 due to COVID-19.
The ENG1 master class size will be reduced to 100 students
in 5 sections of 20, each under the supervision of a near-peer
TA. Three of these sections will be assigned to the intervention
condition; two will serve as the control. Semiweekly studio
sessions with the full class of five sections will be held
through videoconferencing. After a short introduction to the
day’s materials by the course instructor, breakout rooms will
be utilized for the active learning work of student team of
4. The instructional team, including the instructor and all
near-peer-TAs, will circulate throughout the breakout rooms,
responding to student questions as needed. A group chat will

be used by the instructor and TAs to communicate about
which teams need instructional attention. The once-per-week
individual section sessions, follow a similar Zoom format,
utilizing breakout rooms. However, the teaching staff will
be solely comprised of a single near-peer TAs. Intervention
activities (as detailed in Section III) will be delivered primarily
through the online, pre-lesson activities and in the small group
meetings with the near-peer TAs.

A. Timeline

Spring 2020. To date, we have focused on comparing
the algorithmic thinking curriculum in CS1 and ENGI and
identifying opportunities for infusing CS1 concepts into the
ENGI1 course. Additionally, we have investigated pain points
in ENGI regarding student perception, as well as touch points
to CS concepts. We have drafted our initial approach and are
seeking feedback and additional ideas.

Summer 2020. Prior to fall semester, we will refine our im-
plementation plan and prepare for deployment. Our team will
identify specific points within ENG1’s schedule for generaliza-
tion of skills, targeted activities, and demonstration of practical
application. We will create training materials supporting TA
delivery of intervention activities and data collection.

Fall 2020. Interventions will be employed in ENGI1. Inter-
ventions (detailed in Section III) will be administered within
three sections of the course, with two sections utilized as
controls. Interventions will be administered either within the
pre-lessons or the TA sessions. Assessments, as well as any
additional data collection, will be conducted. Any modifica-
tions required to the process over the course of the semester
will be documented. The control and intervention sections of
the ENG1 course will allow for comparison.

Spring 2021. We will conduct a full analysis of data and
assessments from Fall 2020. Findings and process will be
reported. We will consider whether broader implementation
and validation of the intervention is warranted for the next
academic year, or if new approaches should be adopted.

B. Assessment

Technology Acceptance and Attitude Surveys. Our pre-
vious work has explored student responses throughout the
semester to these surveys. Surveys examining student attitudes
and acceptance [19], [16] can allow us to recognize if stu-
dents perceive that MATLAB skills can generalize to other
technology, and if they are more accepting of MATLAB as a
programming language. Also, as we have given such surveys
previously, we will not only be able to compare this semester,
but potentially compare to previous semesters as well.

Responses to Algorithm Worksheets and Quiz. Student
responses to ENGI algorithm exercises can be qualitatively
investigated for correctness and clarity of responses: specifi-
cally, do students who received the intervention complete the
worksheets with greater precision than the control? In addition,
the quiz we develop on this topic will allow for more targeted
exploration of the data, and quantitative measures to inform
our qualitative exploration.

Review of Reflections. Student responses to the reflection
prompts on engineering careers and relevant skills may also
provide valuable qualitative feedback to further our under-
standing of engineering student attitudes, as well as to assess
what impacts the intervention may have had.

V. IMPACT

Success in this project would see students in ENG1 having
an increase in confidence, interest, and understanding of pro-
grammatic thinking in an engineering context, and the value it
can have for their future careers. We hope to learn what works
well, find new ideas to try moving forward, and identify what
may not work as anticipated regarding integrating disciplinary
approaches across courses.

This work is aligned with our university’s 21st Century
Education Initiative, which entails preparing our students for
the Fourth Industrial Revolution. This requires all students
understand the digital landscape that is now an everyday
component of our world. We hope to find ways to more
strongly connect our ENG1 course to these ideas, and would
enjoy seeing such efforts ripple across courses and majors. We
hope the path we chart here can serve as a model for further
interdisciplinary work within our university.

In addition, we hope our plan, findings, and reflection can
guide courses outside of our university in designing multidis-
ciplinary infusions. Use of computation is a reality in careers
across majors around the world. Increasing student acceptance
and knowledge is an imperative for their success beyond
just our university. Our work aims to encourage adoption of
relevant interventions beyond our university. In addition, we
hope that with successful interventions, replication and cross-
university studies could be conducted as well.

VI. CONCLUSION

Our work in progress is exploring the infusion of in-
troductory computer science principles into an engineering
fundamentals curriculum. We hope to motivate students to rec-
ognize that MATLAB programming skills can be generalized,
to better target activities surrounding algorithmic thinking,
and to demonstrate the practical applications of programming
skills in engineering careers. Our ENG1 students possess
engineer identities, but do not often see programming skills
as relevant to this. Our interventions are intended to modify
student acceptance, utility, and understanding of the value of
programming in engineering contexts. We hope this approach
can later be scaled and applied to other disciplines working to
add computing concepts into their curriculum.

REFERENCES
[11 J. Kerns, “Do mechanical engineers need programming
to survive?”’ Machine Design, March 2017. [Online].
Available: https://www.machinedesign.com/community/editorial-

comment/article/21835239/do-mechanical-engineers-need-
programming-to-survive

[2] “ABET engineering accreditation criteria,” 2020. [Online]. Avail-
able: https://www.abet.org/accreditation/accreditation-criteria/criteria-
for-accrediting-engineering-programs-2020-2021/

[4]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

L. M. Lingar, A. Williams, I. Jeldes, and R. McCord, “Motivation
profiles of non-major computer programmers in a flipped classroom
environment,” in American Society for Engineering Education (ASEE)
First Year Engineering Experience (FYEE) Conference. Daytona
Beach, Florida: ASEE Conferences, August 2017. [Online]. Available:
https://peer.asee.org/29427

A. Godwin, G. Potvin, Z. Hazari, and R. Lock, “Identity,
critical agency, and engineering: An affective model for predicting
engineering as a career choice,” Journal of Engineering Education,
vol. 105, no. 2, pp. 312-340, 2016. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jee.20118

P. Vincent-Ruz and C. Schunn, “The nature of science identity and its
role as the driver of student choices,” International Journal of STEM
Education, vol. 5, 12 2018.

B. M. Capobianco, B. F. French, and H. A. Diefes-Du, “Engineering
identity development among pre-adolescent learners,” Journal of
Engineering Education, vol. 101, no. 4, pp. 698-716, 2012. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2168-
9830.2012.tb01125.x

J. R. Morelock, “A systematic literature review of engineering
identity: definitions, factors, and interventions affecting development,
and means of measurement,” European Journal of Engineering
Education, vol. 42, no. 6, pp. 1240-1262, 2017. [Online]. Available:
https://doi.org/10.1080/03043797.2017.1287664

A. Godwin, “The development of a measure of engineering identity,”
ASEE Annual Conference & Exposition, Jan 2016. [Online]. Available:
http://par.nsf.gov/biblio/10042227

D. T. Rover, “Engineering identity,” Journal of Engineering
Education, vol. 97, no. 3, pp. 389-392, 2008. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.2168-
9830.2008.tb00986.x

D. M. Hatmaker, “Engineering identity: Gender and professional
identity negotiation among women engineers,” Gender, Work
& Organization, vol. 20, no. 4, pp. 382-396, 2013. [On-
line]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-
0432.2012.00589.x

K. Tonso, Engineering identity, January 2015, pp. 267-282.

K. Meyers, Engineering identity as a developmental process. Purdue
University, 2009.

J. Mahadeo, Z. Hazari, and G. Potvin, “Developing a computing
identity framework: Understanding computer science and information
technology career choice,” ACM Trans. Comput. Educ., vol. 20, no. 1,
Jan. 2020. [Online]. Available: https://doi.org/10.1145/3365571

A. N. Washington, S. Grays, and S. Dasmohapatra, “The computer
science attitude and identity survey (csais): A novel tool for measuring
the impact of ethnic identity in underrepresented computer science
students,” 2016.

A. Garcia, M. Ross, Z. Hazari, M. Weiss, K. Christensen, and
M. Georgiopoulos, “Examining the computing identity of high-
achieving underserved computing students on the basis of gender,
field, and year in school,” Collaborative Network for Engineering
and Computing Diversity (CoNECD), Apr 2018. [Online]. Available:
http://par.nsf.gov/biblio/10075621

A. Hoegh and B. M. Moskal, “Examining science and engineering stu-
dents’ attitudes toward computer science,” in 2009 39th IEEE Frontiers
in Education Conference, 2009, pp. 1-6.

K. Steelman, M. Jarvie-Eggart, K. Tislar, N. Manser, B. Bettin, L. C.
Ureel, and C. Wallace, “(work in progress: The perception of computer
programming within engineering education: An investigation of student
attitudes, beliefs, and behaviors,” in To Appear In: 2020 ASEE Annual
Conference & Exposition, 2020, pp. XXX—XXX.

J. Turns, B. Sattler, K. Yasuhara, J. Borgford-Parnell, and A. J.,
“Integrating reflection into engineering education,” vol. 35, 06 2014,
p. 64.

V. Venkatesh, M. G. Morris, G. B. Davis, and F. D. Davis, “User
acceptance of information technology: Toward a unified view,” MIS
Quarterly, vol. 27, no. 3, pp. 425-478, 2003. [Online]. Available:
http://www.jstor.org/stable/30036540

